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The uniform displacement of immiscible liquids in a porous medium is studied 
numerically for two difference methods of accounting for nonequilibrium. 

The classical theory of equilibrium filtration of immiscible liquids constructed by 
Masket and Leverett is based on the function of relative phase permeabilities Ki(s) and the 
Leverett function J(s), characterizing the capillary pressure jump. These functions were 
established from experiments on steady-state displacement. The nonsteady displacement pro- 
cess is usually characterized by the presence of regions of sharp change in saturation with 
respect to both space and time, the Masket--Leverett equilibrium theory sometimes being 
invalid in this case. The simplest scheme of allowance for nonequilibrium [i] reduces to 
assuming that the functions Ki(s) and K2(s), J(s) are the same in a nonequilibrium flow as 
in the equilibrium case but depend not on the true water saturation s but on a certain 
effective water saturation o. The authors of [2] proposed a kinetic equation linking the 
effective saturation with the true saturation: 

& 
- s + T f s ) - - -  (1 )  

at 
The methods of asymptotic analysis were used in [2] to obtain the dependence of the width of 
the displacement front on velocity for this model with T(s) = const, while the problem of 
countercurrent capillary impregnation was analyzed in [3]. The problem of displacement with 
large values of the nonequilibrium parameter has not yet been investigated. At the same 
time, the effect of nonequilibrium on displacement characteristics may be great in the flood- 
ing of oil-bearing strata [4]. 

Here, we use a unidimensional formulation to numerically analyze displacement with a 
constant total flow of fluids into the sample (Rappaport--Lees problem) within the framework 
of a model of nonequilibrium filtration with ~(s) monotonically increasing from 0 to ~, and 
s ~ [ O ,  s,]. 

At a constant rate of filtration of the mixture V0, the system cf Masket--Leverett equa- 
tions and Eq. (I) reduce to the following dimensionless equations (with the same notation 
being kept for the dimensionless variables): 

Here, D = ~:,Vo/Lrn; P = P~/P2; 

Os = O t  OxO [ sa(o)~'ocrox - -F(cr ) ] ,  (2)  

DP, (s) ~ t  -+ s = ~. (3)  

= y ]/[(~4/VoLv~; F ((1) = K~ (o')/(Kl (cr) -}- ~.~K2 (cO); a (or) - - -  F ((r) K2 (or) dJ (cr) d---7---; 
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Fig. i. Structure of the displacement front with t = 0.3, 
= 0, and e = 0 (a - with the use of Eq. (3); b -- (8)): i) 

D = 0 (Baclay--Leverett solution); 2) 0.01; 3) 0.1. 

Fig. 2. The relation F(o(s)) obtained with the solution of 
system (2-3) for different values of the nonequilibrium para- 
meter at t = 0.i, ~ = 1/3, e = 0: 1) D = 0; 2) 0.01; 3) 0.i. 

l 1 R(s)  ~(s) sin ~ , 

~* 1, s , ~ s ~ l ;  

m is porosity; K is absolute permeability; ~ is surface tension; ~i are the viscosities of 
the liquids; L is the length of the sample. The time was made dimensionless with respect 
to the quantity V0/Lm and the space coordinate with respect to the length L; s is the normal- 
ized saturation. 

We assign the initial distribution of saturation s(x, 0) = 0 for Eqs. (2) and (3). At 
the inlet, we assign the condition of equality of the rate of flow of the displacing liquid 
to the rate of flow of the mixture 

0o 
s a ( ~ - - - - F ( ~ ) = - - i  a t  x = O  ( 4 )  

Ox 

We also impose the condition that the flow rate of the liquid at the outlet be proportional 
to its mobility Ki(o)/~i, i.e. we solved the problem without allowance for the end effect 

~a(~) 0--2--~ = 0  ~t x = l .  (5)  
Ox 

Differentiating (3) with respect to t and inserting 8s/3t from the resulting equation 
into (2), we arrive at an equation to calculate c(x, t): 

( 0o ) +( Oa 0 ~a (~) F (a) + D R (s) Os ( 6 )  
Ot Ox , Ox 

By virtue of the property R(0) = 0, we took zero as the initial value for o. For Eq. (6), 
we used the integrointerpolational method in [4] to construct an implicit conservative dif- 
ference scheme. The term with R(s) 8s/St on the n-th layer was approximated through o n and 
s n by virtue of Eq. (3). This allowed us to retain two layers in the scheme. The method 
of quasilinearization was used to reduce the nonlinear equation for o n+1 to a linear equa- 
tion. The latter was then solved by the method of three-point trial run. After determining 
okn+i, we solved Eq. (3) for s by an implicit scheme with iterations for nonlinearity. We 
then used the resulting values of okn+l and skn+i to refine o n+l and so on until the required 
accuracy was attained. 

The calculations were performed for the model relative phase permeability function and 
model Leverett function 
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l--s 
K~ (s) : s~, K~ (s) = ( I  - -  s)~, J (s) = 

3.09 (0.1--k s) 

with ~ = 1/3, which corresponds to frontal saturation s c = 0.5 in the gaclay--Leverett 
theory. Nonequilibrium most characteristically appears at s = 0. In light of this, we 
henceforth analyze only this case. 

Figure la shows profiles of saturation distribution s(x, t) along the sample with 
different values of the nonequilibrium parameter D. The profiles are compared with the 
solution of the Baclay--Leverett problem obtained by the same scheme. It was shown in [i, 2] 
by the methods of asymptotic analysis that even at s = 0 nonequilibrium leads to blurring 
of the discontinuity and the formation of a stable transitional zone whose length depends 
on D. 

At large D, the calculations also show a reduction in frontal saturation (Fig. la). 
This is caused by the fact that the lengthwise distribution of saturation is determined by 
the form of the Baclay--Leverett function - which at large D changes appreciably not only in 
the region of large saturation gradients near the displacement front, but also in the region 
as a whole. Figure 2 shows the character of the change in the function F(s) with an increase 
in the nonequilibrium parameter for the saturation profiles (Fig. la). An increase in D 
accelerates the increase in the function F(o(s)) in the region of small degrees of satura- 
tion, which in turn leads to a reduction in frontal saturation. 

The model of nonequilibrium displacement in [i, 2] is based on the dependence of effec- 
tive saturation o on the rate of change in the true saturation. At the same time, effective 
saturation is also determined by the character of flow of liquid to an elementary volume 
(particularly in nonuniform media). The inflow depends on the displacement rate and the 
rate of capillary outflow of liquids into low-permeability blocks, which is determined by the 
saturation gradient. The simplest relation for determining effective saturation in this case 
can be written in the form 

~ : s - -T(s ) ( - -~ - - ) -g rads .  (7) 

Thus, Eq. (i) characterizes the nonequilibrium of the process of displacement through 
the temporal nonuniformity of saturation at the given point, while Eq. (7) does the same 
through the spatial nonuniformity of the saturation field. In the unidimensional case, with 
a constant total filtration velocity at the inlet, Eq. (7) takes the following form in 
dimensionless variables 

as (8) 
= s - - D R ( s )  - -  

Ox 

A steady-state solution of the travelling wave type, with constant saturation at the 
displacement front, exists in this case in the same form as for the model [i, 2]. This 
can be demonstrated by changing over to a coordinate system which moves with the velocity of 
the displacement front. Then Eq. (8) coincides with (3) to within the coefficients. We 
used (8) to perform calculations of a displacement problem without allowance for the capil- 
lary pressure jump, s = 0, and with a constant total phase flow at the inlet. Here, R(s) 
had the same form as previously. To calculate s(x, t) in this case, we obtain the equation 

Os __0 F ( s-- DR (~ O--~x I ~ O. a---T-~ + ax 

The initial condition and the condition at the inlet remained the same. At the outlet 
we imposed the condition 8s/Dx = 0, which is equivalent to choosing the phases to be propor- 
tional to their mobilities with respect to physical saturation or assuming the absence of 
nonequilibrium effects at the outlet of the sample. The calculations were performed by a 
through method on the basis of an explicit scheme which at D = 0 changes to the "explicit 
angle" scheme for the Baclay--Leverett equation. 

Figure ib shows characteristic profiles of water saturation along the length x obtained 
in calculations performed for different values of the nonequilibrium parameter D. As in the 
relaxation model [i, 2] (Fig. la), with small values of D (line 2 in Fig. ib) nonequilibrium 
redistribution of saturation leads to blurring of the Baclay--Leverett saturation jump 
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Fig. 3. The function F(o(s)) obtained in the solution of system 
(2-8) for different values of the nonequilibrium parameter D with 
t = 0.4, ~ = 1/3, ~ = 0: i) D = 0; 2) 0.01; 3) 0.i. 

Fig. 4. Dependence of the breakthrough time of the displacing 
phase on the nonequilibrium parameter D calculated from model 
(2-8); T o is the breakthrough time in the Baclay--Leverett prob- 
lem (with D = 0). 

(line i). The length of the stabilized zone increases with an increase in D. At large D 
(line 3 in Fig. la and b), the solutions are also close as a whole but the saturation pro- 
files are flatter in the calculations performed with (8). This is particularly true for 
large values of saturation. 

As is known, to determine frontal saturation in displacement problems it is sufficient 
to draw a tangent to the curve F(o(s)) from the coordinate origin. Then the point of tan- 
gency will determine the value of frontal saturation. With an increase in the values of the 
nonequilibrium parameter, theBaclay--Leverett function will approach linearity within a 
broad range of saturation s (Fig. 3). Discerning the saturation jump becomes difficult, and 
the notion of frontal saturation loses meaning. This leads to a flat saturation profile in 
the solution (line 3 in Fig. ib) and, thus, to a shortening of the time over which the dis- 
placing liquid forces its way out of the sample. It can be seen from Fig. 4 that an 
increase in D is accompanied by a monotonic decrease in this period of time. 

Calculations performed in accordance with the relaxation model [i, 2] showed that the 
structure of the function F(o(s)) does not change qualitatively in the investigated range of 
the nonequilibrium parameter and frontal saturation can be determined by the established 
method (see Fig. 2). However, its value decreases appreciably with an increase in D, which 
leads to shortening of the period of waterless displacement in this model as well. It was 
shown in [2] that ~, is on the order of one year for the conditions in oil-bearing strata 
(m ~ 0.i; L % i00 m; V 0 % 10 -4 cm/sec), which corresponds to D % 3. The above calculations 
show that nonequilibrium begins to be significantly manifest at D = 0.05. Thus, the nonequi- 
librium effect may be substantial in strata. 

NOTATION 

s, true normalized water saturation; o, effective water saturation; Ki(s), function of 
relative phase permeabilities; J(s), Leverett capillary pressure function; ~(s), relaxation 
time; e, capillary parameter; D, relaxation parameter; p, ratio of viscosities; F(s), Baclay-- 
Leverett function; V0, total filtration velocity; t, time; x, space coordinate. 
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